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COORDINATE PERTURBATION AND MULTIPLE SCALE
IN GASDYNAMICS
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Usually, the application of the coordinate perturbation technique consists in transforming the equations
to perturbed coordinates, and determining from the transformed equations the amount of coordinate
straining appropriate to obtain a uniformly valid expansion. However, the transformed equations may
become unwieldy with increasing order of the system, number of variables, and order of the approximation.
There exists a much simpler way of applying the technique, which bypasses the transformed equations
and provides the appropriate coordinate stretching by simple algebraic manipulations on the non-
uniformly valid expansion obtained by straightforward expansion from the original equations.
Interesting results are obtained by applying the procedure to two gasdynamical problems. In the first
the flow field around a supersonic two-dimensional wing is determined up to third order, including a
uniformly valid representation of the front shock shape, valid even when the shock does not start at the
leading edge. The second problem concerns the oscillations in a closed tube following an arbitrary initial
disturbance, both when the two ends are closed, and when one of the two ends contains an oscillating
piston (the inviscid Chester problem). In both problems the uniformly valid expansions are substantially
simpler than the non-uniformly valid. But most interesting is the result that the uniformly valid expansions
cannot be obtained without supplementing the coordinate perturbation technique by the multiple scale
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SIS

O: 1. A SIMPLE FORMULATION

E_{; G Among the techniques developed in recent years for the treatment of nonlinear p.d. equations the
T 0O oldest is Lighthill’s (1949, 1961) extension of the classical Poincaré method of nonlinear mechanics.
= w This technique, which substantially consists in perturbing not only the unknowns, but also the

independent variables, goes presently under several names, such as the ‘PLK technique’, the
‘coordinate stretching —or straining —technique’, and the ‘coordinate perturbation technique’.
Although success has sporadically been achieved for other types of p.d. equations, this

t Partially supported by N.A.S.A. grant 31-001-155, this research was conducted during the academic year
1968-9, while the author held the position of Professeur Associé at the Institut Henri Poincaré of the Faculté des
Sciences de Paris.
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276 L. CROCCO

technique appears to be particularly well suited for equations of the hyperbolic type, where it
makes it possible to follow to any order the actual wave propagation paths.

In spite of the fact that the idea on which the method is based is quite simple, its application
following the standard procedure can become discouragingly cumbersome and confusing when
many variables are involved, particularly for higher order approximations. Suppose indeed, to
fixideas, that we are seeking the solution z(x, y; €) of a p.d. equation in two variables, containing a
small parameter ¢, and suppose that the result z = zy+e€z; +€%z,+..., of a straightforward
expansion is not uniformly valid for e— 0. Then, substantially, the idea is to associate to the
z development the additional developments

¥ =X+ex;+ex,+..., y=Y+ey, +e¥y,+...

for the independent variablest and to consider z to be a function of the strained variables X, ¥
rather than of the original unstrained variables, determining the available straining coefficients
X1, Y15 Ko, Yo, --- (to be also considered functions of X, Y) in such a way as to restore the uniform
validity of the z development. This is achieved, sometimes rather laboriously, by working on the
p.d. equations transformed to the X, Y variables. For instance z, (the subscript letter indicates
partial differentiation) is replaced by

_ 2 2
Zy = Zyx +€(Z1x + Zox¥1x T Zov Y1x) + [ Zox + Zix X1 x + Z1v Y1x T Zox (Rox + XY x + X7 Yix)

+Zoy (Yox +Y1x¥1ix + v Yix)] + -

and z,,in asimilar way by an expression in terms of first- and second-order derivatives containing,
toorder €%, 27 terms. Itis evident that the transformed equations become increasingly complicated
and confusing (because the number of unknown functions increasingly exceeds the number of
equations) with increasing order, number of variables and order of the approximation, with the
result that the technique is seldom applied except to the simplest types of p.d. equations and to
the lowest order of approximation.

In reality, to the simplicity of the idea corresponds a very simple way of applying the method,
a way which —despite its being described in 1962 by Pritulo (1962) —has been all but ignored by
the occidental experts.} It seems appropriate to reproduce here the substance, slightly general-
ized, of Pritulo’s suggestion. For more generality, suppose that the equations contain, in addition
to the small parameter ¢, m unknown variables z¥ and » independent space and time variables
(coordinates) #®. In a straightforward expansion procedure the m-dimensional vector 2(#;e¢)
with components z®, function of ¢ and of the #-dimensional vector ¥ with components x®, is
developed as (x5 €) = %(¥) +e2,(%) +€22,(%) + ... (1.1)
and %, 2, %,, ... are successively determined from the equations of increasing order. We now
introduce a coordinate transformation from x® to X®(x;¢), and define the reciprocal transfor-
mation in vectorial form through the development

®(X;e) = X+ex (X) +e2xy(X) +... (1.2)
the components of X being X®, and #,, &,, ... being vectors having for components the straining

1 Lighthill actually considered only one such development. Lin (1954) did, however, take into consideration
two.

1 Only recently the author has become aware of a 1967 paper by Martin who independently proposed a
method similar to Pritulo’s, but less direct and more involved.
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COORDINATE PERTURBATION IN GASDYNAMICS 277

coeflicients #{", xM, .... These represent n sets of functions, undefined for the moment, to be
determined, if possible, in such a way as to insure the uniform validity of the development
z(x5€) + Z(X;6) = Zy(X) +€Zy(X) +€*Zy(X) + ... (1.3)
when the development (1.1) fails to be uniformly valid. But expanding in Taylor series we get
2(x;€) = 2(X;e) + (AP — XW) 2. (X €) + 3(x® — X®) (x® — X0z 1w (X €) + ...,

where we have used the summation convention with respect to the superscripts.
Introducing here the developments (1.1) and (1.2) and comparing with the development (1.3)

Zy(X) = z,(X),

Z\(X) = 2,(X) + 2" (X) 2o, a0 (X),

Z,(X) = 2(X) + 40(X) 2, 100(X) + 0(X) 2 ()
1O (X) 2 0, 0(X),

we get

(1.4)

and so on. Observe that (1.4) can be also obtained directly by introducing (1.2) in every term of
the development (1.1) and expanding each term in Taylor series.

Equations (1.4) are all that is needed, in addition to the formal solution (1.1) of the untrans-
formed equations with the corresponding b.c., in order to apply the coordinate perturbation
technique, and the sometimes discouraging complication of the transformed equations can be
entirely bypassed.

Indeed, once the sequence 2,(%), z,(%), Z,(%), ... is known, equations (1.4) are sufficient to
indicate, often upon simple inspection, the suitable form of the straining coefficients #{", x{, ..
and to determine the sequence Z,(X), Z,(X), Z,(X) appropriate for the uniform validity of the
development (1.3), without any necessity of solving the transformed equations. It must be added
that the straining coefficients contain an element of arbitrariness which contributes to the
confusion when solving the transformed equations, but does not create any particular difficulty
when making use of (1.4).

Pritulo’s formulation can be easily applied no matter how large is the number of variables. It
also holds, of course, when there is only one unknown and one independent variable, in which
case the equation is simply an ordinary differential equation and the technique degenerates into
the classical Poincaré technique. Indeed, also the application of the latter is substantially simpli-
fied by Pritulo’s formulation, as shown by the simple illustrative example of § 2. It is remarkable
that in so many years this simple formulation of Poincaré’s method had never been pointed out.

We observe that the simplicity of the formulation also allows an easy and fast answer to the
question whether the coordinate perturbation method will or will not apply to a particular
problem.

In §§3 to 5 we present examples in the field of fluid mechanics, clearly showing how the pro-
cedure can be applied, to an order where the standard procedure would be unwieldy. They also
show how drastically simpler the successive terms of the resulting expansions are when compared
to those of a straightforward expansion. But, most important, it will become clear that in the
field of fluid mechanics and in the presence of shocks the coordinate perturbation technique is
incomplete unless it is supplemented by the multiple scale technique.

23-2
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278 L. CROCCO

2. OSCILLATOR WITH NONLINEAR RESTORING FORCE

This is a classical example for the Poincaré technique (see, for example, Cole (1968). The non-
dimensional equation between the normalized displacement z and time ¢ is

zy+z—€z3 = 0, (2.1)

with ¢, small, representing a measure of the nonlinearity of the restoring force. Assume z(0) = 1,

z,(0) = 0, and expand as
z(t;€) = z,(f) + ez, (8) +€22,(8) + ..., (2.2)

so that (2.1) and the b.c. split into
Zy +2 = 0; zy(0) =1, zy(0) = 0;
Zyp+ 21— 25 = 0; 2,(0) = 0, z,(0) = 0;
Zops+ 29— 3232, = 0; z5(0) = 0, zy(0) = 0;
and so on. Integrating we obtain
zy(t) = cost,

z(t) =

— 35 (cos 3¢ —cos ¢) + $¢sin 4,
z5(t) = 1oz (Cos Bt —cost) — 135 (cos 3t —cost) —52stsin 3t + 5t sin t — 552 cost.

Evidently the secular terms in z, and z, prevent the uniform validity of the expansions (2.2),
unless et is small. However, if we write

z(t;e) = Z(T; €) = Zy(T) +€eZ,(T) +e2Zy(T) +
with t=T+ety(T)+ey(T)+...

we immediately get from the application of (1.4)

Zy(T) =2y(T) =cos T,
Z(T) =2z, (T) +tyzo(T) = — g5 (cos 8T —cos T) +[§T—t,]sin T,
Zy(T) = zo(T) + 1 24(T) + o 206(T) + 33 2004(T)
= 1oz (C0s 6T —cos T) — 135 (cos 3T —cos T) — 526 Tsin 3T+ 5 Tsin T

—i9sT?cos T+t [%5sin 37T + 11 sin T+ $ T cos T']
—tysin T'— 342 cos 7.
From the second equation it is immediately seen that the choice

eliminates from Z; the secular terms. Actually any bounded function could be added to (2.8), but
obviously (2.3) represents the simplest choice. Similarly, after inserting this value of #;, the third
equation becomes

Zy(T) = vo5z (cos 5T —cos T) — 135 (cos 3T —cos T') + [5% T — t,] sin T,

so that the choice ty=3%T
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COORDINATE PERTURBATION IN GASDYNAMICS 279

eliminates from Z, the secular terms. Again, this value of ¢, represents obviously the simplest
choice. Hence finally the solution of (2.1) is implicitly given by

z=cos IT'—45 (cos 3T —cos T)e+ 155z (cos 5T —cos T') — 135 (cos 3T —cos T)]e? +...

with t=[1+3e+5562]T+....

3. SUPERSONIC AEROFOIL THEORY

The aerofoil sections considered here are sharply pointed at both their leading and trailing
edges, and the flow deflexions are assumed to be so limited that no subsonic flow regions appear.
This is a classical example, and has been widely treated with more or less rigour by Lighthill
(1954), Ackeret (1925), Buseman (1935), Donov (1939), Friedrichs (1948), Van Dyke (1964)
Legras (1953) and by a number of other authors. Here our purpose being a test of the mathemati-
cal method, we shall confine our attention only to the solution between the front and the rear
shocks and to the determination of the front shock shape. It is expected that the application to the
rest of the flow field can be conducted without additional difficulties along the same lines.

Since we are going to push the approximation to the third order, it is preferable to work on the
original conservation equations without making simplifying statements about entropy or vorti-
city. Also, it will be interesting to obtain the results from the equations themselves, without the
help of physical reasoning (so extensively used, for instance, by Lighthill 1954).

The flow equations for a perfect, polytropic and inviscid gas are

V.(pq) =0; M?*q.V)q+(1/yp)Vp=0; q.Vo=0.

Here the pressure p, density p and velocity q are normalized dividing by their undisturbed values
(at infinity upstream), M is the Mach number in the undisturbed flow and o is the entropy
variation from the undisturbed condition, normalized dividing by the specific heat, so that we can

write
p = pirer, (3.1)

This equation is used to eliminate the density from the above equations. The two-dimensional
result, in scalar form, is

(1/y) (upy+vp,) +p(uy+v,) = 0, (3.2)
M2 (uuy +vuy) + (1/7)p= " e7py = 0, (3.3)
M2(uv, +vv,) + (1]y)p~7 e?p, = 0, (3.4

(3.

)
.5)

uo, +vo, = 0, 5

The boundary conditions are
p=1 u=1, v=0, o0=0 at x=—o0, (3.6)
vju=eW'(x) along y=eWW(x), (3.7)

where ¢ represents a wing thickness parameter and W(x) defines the wing profile family. The
prime indicates differentiation.
Along the shocks, the shape of which is to be determined, the conservation equations have to be
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280 L. CROCCO

satisfied. Indicating with Af the jump of a quantity f at the shock, the conditions can be written
in the form dysn A(po) Au

de ~ Apuw) A (3:8)
A[%+7 Mz(u2+vz)] _o, (3.9)
RS

Equations (3.8) express the conservation of mass and of tangential momentum, (3.9) the con-
servation of energy and (3.10) corresponds to the Rankine-Hugoniot relation and follows from
the conservation of normal momentum.

In a straightforward expansion procedure we introduce the expansions

p=1+ep +€%,+63p3+..., o =¢€0o+e2ry+edog+...,
u=1+eu+eu,+edus+..., v=ev;+e2,+e%;+
n (3.2) to (3.5); as well as in the boundary and shock conditions (3.6) to (3.10), and separate the

various orders.
Up to third order we obtain

(3.11)

(1/7) (bog 41 pro + 01 1) + g+ Vay + P1 (U1 +01,) = 0,

(1/7) (3g+ s pog + 1 oy + s p1i+ 05 1) + gy + Vs, + P (o +03y) + Po(ty +01,) = 0;
MPuyp+ (1/7)p10 = 0,
MP(ugy +u sy +v10y,) + (1/7) pow — (1/7)*p1 P12 = O,

M (g, ty Ugg + 3 Ugy + Up g+ Vo ttyy) + (/) pa— (1/7)2 (b1 og + P2 P12) + (¥ +1) [2¥2] pip1s = 05
(3.13)

szlaz'{’ (1/7)p1u = O)
M2(vgy, + g 010+ 01 01,) + (1)) oy — (1]7) 21 1y = O,

M2 (035, 4ty Vg, + V1 Vgy -+ Ua V1 +V301) + (1)) Py — (1/7)2 (b1 boy + b2 bry) + (v + 1) [2V3] 05 b1y = O;
(3.14)

(1/7)p1w+ Uy +V1y = 0,
} 012

=0
0-2w+u10'1+010‘1y = 03} (3'15)
O3 T Uy Oy + V1 09y +Up 01+ 0307 = 0.
Observe thatin (3.13) and (8.14) there should appear terms containing o, and o,. Since, however,
these are later found to vanish throughout the field, the corresponding terms have been sup-
pressed for simplicity. The b.c. (3.6) becomes simply
PrL=U =V =0 =Py =Uy =0V =0y =fg=uyg=03=03=0 at x=—oco. (3.16)
The b.c. (3.7) at the aerofoil surface are transferred to y = 0 by using the expression
v(x, W) = evy(x, 0) +€*[vz(x, 0) + W(x)vy, (%, 0)]
+€%vy(x, 0) + W (%), (x, 0) + FW2(x)vy, (x, 0)] +

and similarly for u(x, eW). One obtains

vi(%, 0) = W’(x),

02( ) Wl(x)ul(xa 0) - W(x)vly(xa O): (3.17)

v3(%, 0) = W’ (x) [ug(x, 0) + W(x)u, (%, 0)] — W(x)vg, (x, 0) — 5 W3(x)vyy, (%, 0).
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COORDINATE PERTURBATION IN GASDYNAMICS 281

For the shock conditions we will write for the moment only those corresponding to the last
equation (3.8), that is AuA(pu) + AvA(pv) = 0, or
(Auy)2+ (Avy)? + Ay Ap, = 0,
2(Auy Auy + Avy Avy) + Auy Apy + Aus Apy + Auy A(pyuy) +Av; A(py o) = 0,
2(Auy Aug + Avy Avg) + (Auy)® + (Avy)® + Ay A(pytty + pytty) + Avy A(pyvy + pyv,)
+ Auy Apyuy) + Avg A(pyvy) + Aus Apy + Auy Apg = 0

(3.18)

and to (3.9) and (3.10), that is

(1/7)Apy— (1/27") Ap+ MPAlup + 5 (ui +03)] = 0,

(1/7)Aps— (1/7)A(papo) +[(v + 1) [6¥°1 02 + [ (v + 1) [127°] (8p1)® + MPA(ug + uy g +05) (= 0; |
3.19

(1/y)Apy+ M?Auy = 0:}

Aps— (1/7)Apa+[(v —1)/2y*1ApT = O,

Aps— (1/y) s+ [(y = ) [y*1A (b1 £2) —[(v = 1) (2y — 1) [67°1Ap +[(v* — 1) [12y°] (AP1)3=( : )
3.20

Apy—(1[y)Ap, = 0>}

Observe that the equations obtained from (3.10) have been manipulated so as to obtain the
form (3.20), explicit in the Ap;, which can immediately be compared to that obtained from the
expansion of (3.1), showing that

Aoy = Aoy = 05 Aoy = [(y2—1)[1293] (Apy)3. (8.21)

This is the classical result that the entropy jump across a shock is of third order in the shock

strength. The consequence of (3.21), (3.15) and (3.16) is that o, = o, = 0 throughout the flow

field, in accordance with the aforesaid simplification of (3.13) and (3.14). Then (3.15) shows that

o3 is independent of x between shocks, o3(y) only changing at each shock by the amount (3.21).
The general solution of the first-order equations is

(17)pr = (MPB) [$1(r) — ¥1(5)],
wy =~ (1/B) [$1(r) = ¥1(s)] +x1(9);
vy = Py(r) +¥(s),
where we have defined r=x—By, s=x+By, B>=M?>-1, (3.22)

and ¢,, ¥y, X, are arbitrary functions of the respective arguments. We see that, through (3.22),
p1, 43 and v; can be considered functions of ¥, y. Alternatively, they may be considered functions of

r, s since we have from (8.22) y = (1)2B) (s—7). (3.23)

Evidently r and s represent the characteristic coordinates of the linearized equations of flow, and
¢, and ¥, represent outgoing and incoming waves, while y; (constant along the third charac-
teristic of the first-order equations) is related to the vorticity by u;, — vy, = x1(¥).

Application of the conditions (3.16) to (3.20) provides for the arbitrary functions the values

Gu(r) = W'(r), ¥a(s) =0, xu(y) =0.
Hence the first-order solution is irrotational and given by

(BlyM2)p, = — Buy = v, = W'(r), (3.24)
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282 L. CROCCO

which represents the classical linear solution. That this solution satisfies the shock condition is
immediately checked by calculating from it the jumps of the various quantities through any
shock, on the two sides of which W’ takes different values, W, and W_, so that

AWy = Wi-W_.,
We get Av, = —BAuy; Apy = (1]y)Ap, = — M?Au,, (3.25)
Auy = — (1/B)AWy,. (3.26)

Equations (3.25) coincide indeed with the first-order shock conditions. In the present problem
we have to take AW, = W if we concentrate on the front shock. Since in the linearized version
its position should coincide with the characteristic 7 = 0if ¥ = 0 is the abscissa of the point where
it crosses the x-axis, one would be tempted to take W, = W’(0), that is constant values for AW,
and all the other jumps. This evaluation, however, is only satisfactory for small values of ey, and
fails to be uniformly valid at large values of this quantity. We will proceed to the correct evalua-
tion later. For the moment we will only notice that the exact equation of the front shock is not
rsn = 0, but might be expressed, for instance, in the form

rsn = G*(s), (3.27)

if the other characteristic coordinate is used as the argument, or in the form

ran = H*(y) = G*san(y)] (3.28)
if the argument must be y. Here ssn(y) represents the one to one relation between s and y along
the shock. Then AW, = W[G*(s)] = W/[H*(y)] (3.29)

can be considered a function of s or a function of .
Inserting (8.24) in the second-order equations (3.12) to (3.14) we obtain

(17)pag+tge+ 0oy = (v +1) (M BYW' ()W (r);
MPuy,+ (1/7)paz = 05 MPvo+ (1/7)pay = O.
The general solution is
us— Xa(y) = — (1/yM>)p,
= — (Ky/2B%) [2ByW' (r)W" (r) + W'*(r)] — (1/ B) [$a(r) = ¥ra(s)]
vy = KyyW’ (r)W"(r) + $(r) + ¥a(s)s
where we have written for brevity
K,(M) = (y+1)M*/2B2,

Here ¢,, ¥, represent arbitrary outgoing and incoming second-order waves and y, is related
to an arbitrary second-order vorticity distribution by uy, —v,, = ¥a(y).
Application of the conditions (3.16) to (3.20) provides for the arbitrary functions the values

Ga(r) = BW(r)W"(r) — (1] B)W'(r);  a(s) = 05 xa(y) = O,
and the resulting second-order solution is also irrotational and given by
uy = — (1/yM?)py = — (K ByyW' ()W"(r) = W(r) W"(r) + K, W'2(7)>}

(3.30)
vy = KyyW'(r)W"(r) + BW(r)W"(r) — (1| B)W"*(r),
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with K,(M) = (1/B% (1 -1K,).

Again one can calculate from (3.30) with the help of (3.24) and (3.25) the following relations
between the jumps of the various quantities at any shock:

Avy = — BAu,— 3 BK,; A(u3) } (3.31)
Apy+§(y = 1) MIA() = (1/y)Apy = — M?Auy, ’

where, of course, A(43) is given by (1/B2)A(W,2) and Au, should be obtained from (3.30). It can
be checked by direct substitutions that (3.31) satisfy to the second-order shock conditions.

After insertion of the first- and second-order solutions (3.24) and (3.30) and some manipula-
tions, the third-order equations (3.12) to (3.14) become

(1/7)p3e + sy + 05, = Py,
M2u3m + (1/7)103:1: = Tfm
sz:%ac + (I/Y)p:}y = y]y’
with @ = (y+ ) MA(K/BYW ™) W'(r) + (Y B W)W () W"(r) — Ky W ()],
Y= (K, M26B)W"(r),
and Ky(M) = (4/BY) [~ 1Ky + (3 +47) M),
The general solution is
us—X3(y) = — (1/yM*)ps+ (K /6B) W"(r)
= — (Ky/B®) {4(r) + ByA'(r) + $ B2 K,y [W"3(r)]"} — (1/ B) [§5(r) — ¥5(5)], (3.32)
vy = (Ky/B?) {ByE'(r) + §B* K y*[W'(r)]"} + P (r) + rs(s)
with A(r) = BRW(r)W'(r)W"(r) — K, W'3(r),
E(r) = BEW(r)W'(r)W"(r) — Ky W'3(r),
Ky(M) = 1+ 4(y + ) M1 = (MYBY]; Ky(M) = 1+ §(y+ 1) M[1 — (M2/2B%)].

In (3.32) ¢ and 33 represent arbitrary outgoing or incoming third-order waves and y, is related
to the arbitrary third-order vorticity distribution, since indeed we get from (3.32)

Ugy —Vgp = Xé(y)

At this point we have to apply the third-order wall and shock conditions, and this time it is
better to show the details of their application.
First we obtain from (3.32) and the third-order wall condition (3.17)

. vg(%, 0) = ¢g(#) + ¢r3(x) = F(x), (3.33)
with
F(x) = (1/8%) (1 = §K)W"(x) + 3B W2x) W (x)] = 2(1 + K W) W' (x) W™ ().
Next we can derive from (3.32), after comparison with (3.24) and (3.30), the following
relations:

(1/7)ps+us = —f5 (v + 1) MOu + M3y,(y),

v3+ Bug = — BK {uyuy +[3(y + 1) M2] [1 — (M?[4B%)]ul} + 2¢4(r) +BX3(y)-} (3.34)

24 Vol. 272. A.
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On the other hand, from the third-order shock equations (3.18) to (3.20) we obtain with the
help of (3.25) and (3.31) the following jump relations across any shock:

(17) Ay + M2 Ay = — 5y + 1) MUA() — (Auy)],
Avy+ B A = — BE{A(uys) + §(y + 1) M2[1 — (M24.B2)] [A () — (D]}

The expressions on the Lh.s of these equations must coincide with those obtained by taking the
jump across the shock of the r.h.s. of (3.34). Hence we obtain, taking for Ay, its value (3.26)

Axs(y) = — (Ki[6B) (AWg)® = x5(y) = — (Ky/6B) W[ H* (y)],}
Aifry(s) = K(AW)® = Yr5(s) = K WB[G*(5)],

with Ky(M) = g Kift — (K,[M?) [1 — (M2[4B%)]}. (3.36)

The first two terms of each of (3.35) apply to any shock, but the last two terms apply only to the

front shock, where (3.29) holds. Indeed, these are the values of y;(y) and ¥4(s) in the region

between the front and rear shocks, since both functions vanish in the undisturbed flow.

To these two equations we can associate that obtained, using equations (3.21), from the fact
that for oy = oy = 0 the last (3.15) says that o is a function of y alone, as already pointed out.
Wo get Aay(y) = (y— 1) M(K,J6B) (AW,,)?

= 0y(y) = (v —1)M*(K,/6B) W’3[H*(y)],}
where again the last two terms of the equation apply to the region between the two shocks. From

the first parts of (3.35) and (3.37) we see that after any number of shocks o5(y) = — (y — 1) M2x,(y),
so that one gets (y — 1) M2(v5, —u3,) = o3(y), (3.38)

(3.35)

(3.37)

a result that could have been directly obtained from the application of the well-known vorticity
theorem, which would have actually provided a speedier determination of y4(y).
Once ¥r4(s) is known after the front shock, as given by the second part of (3.35), we obtain from

(3.33) ¢3(T) — F(T) _KG{W'[G*(,»)]}S, (3.39)

and the complete expressions for the third-order unknowns can be obtained from (3.32). We
observe, as we should, the presence not only of third-order vorticity and entropy variations, but
also, through ¥4(s), of third-order waves coming in from the front shock, and altering through
reflexion the outgoing waves ¢4(r). However, for the actual determination of these third-order
quantities, we must know the shock shape (3.27). Deferring for the moment its determination, we
shall first concentrate on the application of the coordinate perturbation technique.

We observe that up to this point all the labour required was aimed at determining the straight-
forward expansion, and had nothing to do with the coordinate perturbation technique. Applica-
tion of this technique is made necessary by the fact that our expansions contain secular terms in y
and y? (and, of course, higher powers of y for higher order terms) that make it valid only for small
values of ey, that is only for the near flow field. If we require also the determination of the far flow
field we must get rid of those secular terms. So we introduce the perturbed coordinates X and ¥

such that x=X+tex,+ey+..., y=Y+ey +eyp+..., (3.40)

and the perturbed characteristic coordinates

Ro X BT o) (3.41)

S=X+BY =s—es;—€%,—...,
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where of course we have
ro=%—Byy; s =x+By;; 1y=10x,—Byy; 5=+ By, (3.42)

We also define the new expansions
p=1+eP+2P+e3P+..., 0=621+6222+e323+...;} (3.43)
u=1+eU+e2U,+eUs+..., v=eV+el,+e¥;+.... '

The coefficients of all the above expansions are considered to be functions of X and Y, or of R
and S, or combinations thereof. Applications of the relations (1.4) to, say, the v expansion gives

V= (R, (3.44)
Ve = 05(R, Y) +r104,(R). (3.45)
Vs = 03(R, 8, Y) +7,00.(R, Y) + 41020 (R, Y) + 7501, (R) + 37§04, (R), (3.46)

where v,(r) and v,(7, ) are given by (3.24) and (3.30), and v4(, 5, y) by (3.82) after substitution of
¢3(r) and yr4(s) from (3.35) and (3.39).
Equation (3.45) is explicitly written as

V, = K, YW'(R)W"(R) + BW(R)W"(R) — (1/B)W'*(R) +r, W"(R).

We see that elimination of the secular term is achieved by takingr, = — K; YW’(R). However, it is
immediately noticed that a better choice is
r=~K,YW'(R)—- BW(R), (3.47)

which makes W” disappear from the expression for ¥;, and hence eliminates another cause of
non-uniform validity of the expansion, which appears for wing profiles presenting discontinuous
slopes, and hence locally infinite values of W”(R).

That (8.47) represents the correct choice for r, is confirmed when one goes to the third order
(3.46). Indeed, thanks to this choice, a very substantial simplification takes place in the otherwise
cumbersome expression obtained for ¥ after the explicit expressions for v,, v, and vg are substi-
tuted. The secular term in Y2 vanishes identically, and the remaining terms are reduced, after a
good deal of cancelling, to the relatively simple expression

Vo = (1/B?) (1 =3 K)W'(R) — K{ W[ G 4 (R)] - W[ G« (5)]}
+re+ Ky W(R) — Ko YW(R) — Ky WR)W' (R)]W"(R),
with K,(M) = (Ky/B) {1 + (y + 1) M?[1 — (M?/2B?)]}.

If the uniform validity of the expansion has to be insured even for discontinuous slopes, the
bracketed factor of the term in W” must identically vanish. Since we dispose here of two quanti-
ties, 7, and y,, this can be achieved in an infinite number of ways. However, it is clear at first sight

that the simplest choice is g = W(R); 1= K, YW™(R). (3.48)
Hence, considering (3.42) and (3.47) one obtains the first-order straining coefficients as

n=—KYW(R), y=WR), (3.49)

24-2
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286 L. CROCCO
Similarly, to obtain the above value of r,, one can take the second-order straining coefficients as
xy = K YW'3(R), y,=0. (3.50)

It is easily verified that the lines R = const. and § = const. coincide respectively with the out-
going and the incoming characteristic lines of the original equations, the value of the corre-
sponding constant being equal to the unperturbed abscissae of the points where the characteristic
lines intersect the wing surface. We see also from (3.40) that, at least up to second order, the
equation y = el (x) of the wing, when expressed in perturbed coordinates, is ¥ = 0, with X = x.
So that the ¥ —y correction of (3.40) merely represents a vertical translation following the profile.

The fact must be stressed here that, for simplest results, it is convenient to perturb both co-
ordinates, contrary to Lighthill’s original suggestion, followed also by Pritulo. Hence this may
be so even when there are only waves travelling in one direction, and not exclusively when waves
travel in both directions as in the cases treated by Lin (1954) with his characteristic coordinates
approach, where both coordinates were perturbed. Indeed Van Dyke (1964), perturbing only one
coordinate, obtained the result (3.47) for the single straining coefficient r,, but had he gone to
third order without the introduction of the other straining coefficient y, he would have needed a
two-termed 7,, to be compared with the simpler expression (3.48). The complication is likely;to
increase with the order of the approximation.

We observe that all of the above formulation remains valid when the profile has a discon-
tinuous slope. If the abscissa of the angular point is x*, the slope will change abruptly there from
a value W’(x* —) to avalue W’(x* +). It must be clear then that at R = x*, W'(R) can take all
values between those two. To any such value of W’ correspond different values of the x;, equations
(3.49) and (3.50), and of the U,,V,, P,, equation (3.51). These will furnish the position of, and
the flow conditions on, different characteristic lines, all issuing from the angular point, each
corresponding to a particular value of W’. Hence the ‘expansion fan’ produced by the angular
point is properly represented.

Finally, the coeflicients of the uniformly valid expansions (3.42) can be calculated from

V, = —BU, = (BlyM* P, = W'(R),
V= — (1B)W'(R),
Uy = (1yM?) P, = (1/B%) (1- 3K, W'*(R),
V= (1B (1 = §K) W (R) — Ky {WS[GH(R)] = W GH(S)}, ) (3.50)
U+ (K,[6B)WSH* (Y)] = — (1}yM?) By + (K, [6B) W'3(R)
= — (1/B%) Ky W'(R) + (Ky| B) (WS[G*(R)] + W[G*(S)T),
D= 5=0, Iy = (y— ) MK /6B)WSH*(D)],
with Ky(M) = 13K, {1 —3(y+ 1) (M?/B2)}.

Hence, as expected, the secular terms, as well as the terms in the higher derivatives of W, have
disappeared also from the coefficients of the » and p expansions. Naturally, up to second order the
expressions (3.51) coincide with well-known results. (See for instance Van Dyke 1964.)

We come now to the determination of the shock shape functions H* (y) and G*(s). It may be
observed that, for the purpose of their use in (3.51), the shock shape needs only to be determined
to the first order. This means that if (3.28), for instance, expressed in the perturbed coordinates,
were expanded as

Ron = HF(Y) +eHF (Y) + ... (3.52)
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we would need only the function Hj (Y), and similarly from G§(S). However, since we have
already in our hands the elements for the determination of H;* and Gy, we will derive the shock
shape including the first-order terms.

The derivation is based on the use of the first shock condition (3.8), still unused to this point.
Let us write this condition in the form

drAv—dxA(v+ Bu) = 0, (3.53)
all quantities being calculated at the shock, and replace in it, according to (3.41), (3.43), (3.47),
(3.48) and (3.51):
dr = dR{1 —e[BW'(R) + K; YW"(R)] + 22K, YW'(R)W" (R)}
+dY[—eK,W'(R) + €K, W'3(R)],
dx = dR[1—eK; YW"(R) + 22K, YW'(R)W"(R)]
+dY[B—eK, W'(R) +€e*K, W'3(R)], (3.54)
Av = ¢W'(R) —e*(1/ B)W"3(R),
A(v+ Bu) = —€*(K,|2B)W'*(R) + 3K, W'3(R),
with Ko(M) = (Kif BB {1+ [(y +1)[4]M>[1 — (6M*[4B%)]},

and where we have written the developments up to the necessary order only. In view of (3.52), we

can also replace in the above equations the developments
W' (R) = W (H§) +eHfW"(HE) +...; W'(R) = W' (HE) +eHfW" (HE) +....

The result of the expansion of (3.53) is that Hy' (Y) = const. (= 0 if the front shock goes through
the origin) and Hf(Y) = (K,/2) W' (Hy")Y. Similarly, H§ (Y) would contain terms in ¥2and so on.
As a result the expansion (3.52) is only valid for small €Y and is not uniformly valid in the whole
field of flow. Incidentally, the inadequacy of this expansion is confirmed by the fact that the
third-order vorticity and entropy appearing in (3.51) would be constant throughout the field,
while on physical grounds we know they should vanish at large Y.

To restore the uniform validity of the expansion (3.52) it is necessary to introduce a second
scale for the coordinate Y, by picking for the description of the shock shape the additional

transverse variable 7 =cY. (3.55)

Moreover, it is convenient to consider for the moment #sn as a function of R (along the shock),
rather than Rgp as a function of # and introduce the development

Nsn(R) = ny(R) +en,(R) +.... (3.56)
With these changes the first two (3.54) become
dr = — Ky W'dyy+ (1 — Ky, W")dR
+e[ — K Wdy, + K, Wadoy— (BW' + Ky W’ — 2Ky W'W") dR],
edx = Bdyy+e[Bdy,— Ky, W'dn,+ (1 — Ky W) dR],
where again only the necessary terms have been written, and the W', W” stand for W'(R),
W"(R).

1 In a private communication to the author, S. H. Lam observes that the need to switch from x to § = ex arises
every time the coefficients z,(x) of the expansion (1.1) for z(¢, x) are polynomials of order n. This is indeed what
happens in the case of the development (3.52), and can be used as one general rule for the introduction of the new
scale.
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Equation (3.53) splits now in the following equations:
KW' (dno/dR) + K, W'y = 1,
K, W (dny[dR) + Ky W'y = Ko W'3(dno/dR) — Kyy W'+ Ky, W/ W,
with Ky = (Ky/B)[1+2(y+ ) M>*—%K],
Ky, = (1/B) [M?—$K,],
K, = (Ky/B)[3+2(y+1)M?-35K,].
From the first equation we get 3K n, = W(R)|W'"(R).
Using this value of 7, the second equation gives

(Kuf2)s = Koy WOR)W'(R) — Kol () | W at

with Ky(M) = (2/B) {1 +3(y + ) M2~ 1Ky},
(M) = (3B)[(y— ) M2+ 3K,].

In the determination of 5, and 7, the condition thaty = 5, = 7, = 0 at R = 0 (where W(0) = 0)
has been applied. One can easily verify Lighthill’s result that, to first order, the shock bisects the
angle between the perturbed and the unperturbed outgoing Mach waves.

The expansion (3.56) can be inverted to give Rgsn in the form, similar to (3.52) except for the

t
ArETmenS Ran = Hy(n) +eHy(q) + ..
We find Hy(n) = 0(3K.7),
where the function @ is obtained by inversion of W/W'2, so that

071(1) = W)/ W*(1),

after which we obtain Ho(n)
— K WLH )W TH )+ K[ W0
H, () = W'THy(n)]1{1 — 2K, W'Hy(n)1}

For the purpose of the third-order field calculation we need only Hy(7), but we also need the
zero-order shock shape in terms of §. This is immediately obtained from the fact that

7 = (¢/2B) (S—R).
Since Rsn = Hy(7) + ... is always of order higher than ., we can write that along the shocks
1= (}B)eS = /2B,
where we have had to introduce a new scale, { = ¢S, for §. Then, to zero order, we have along the
shock Ron = Gy(Z) = Hy(4/2B) = O(K,L/4B).
Finally, we get the complete third-order solution by taking in (3.51)

W?S[H*(Y)] = W3[O(K,7/2)],
W7[G*(S)] = W3[0, L[4B)], (3.57)
W?[G*(R)] = W[O(K,0/4B)],
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where it has been necessary to introduce a second scale, 6 = eR, also for the R variable. We
observe that the introduction of second scales was not preassumed. It was forced upon us by the
uniform validity of the shock shape equation. Once their necessity is realized, however, the
orthodox procedure (see, for instance, Cole 1968) would require us to start again from the original
equations after introducing the second scales. It may be checked that the third-order results
coincide with those obtained from our less orthodox procedure.

In order to illustrate the above developments, we apply these results to a wing of parabolic
shape and unit cord, W(x) = x(1 —x). Then to zero order

(Kyf2)men = W(H) [W'(Hy) = 3[(1 - 2Hy) =~ 1],
so that Ron = Hy(n) = §[1 - (1+2K,7)"%]
provides the zero-order shock shape, and
Hy(n) = =3 Kis Kyp(1+2K,7)~E+ 3Ky (1 +2K,7) 74 [1 = (1 +2K,7) 2],

the first-order correction coefficient.
The jump across the shock is given by

AWj = WH*(Y)] = 1—2Ren = (1+2K, )"t —2eH () + ...,

and steadily decreases with 7, vanishing for # oo as it must indeed.
Finally, the quantities appearing in (3.57), necessary for the calculation of (3.51), become

respectively (142K, )% [1+ (KB [1+(K.0/B)]

It is interesting to observe that the above determination of the shock and of the flow field works
also when the wing section contains concavities. As a simple example take W(x) = x2(1—x)2 for
the region 0 < x < 1, and zero for ¥ < 0, corresponding to a profile which, if symmetric, presents
cusps, rather than wedges, at both ends. One obtains to zero order

$K7sn = }(1—2H,)~2
and hence Rsn = Hy(n) = §[1 - (2K, 9)74].
Thus to zero order Rgy is 2 0 as 2K;9 Z 1. So the first-order jump across the front shock is
AW, = W[H*(Y)] = §(2Ky9)~H[1 -~ (2K,7)™"]

for 2K, > 1, and AWy, = 0 for 2K;9 < 1. This corresponds to the shock being formed away
from the leading edge at a zero-order vertical distance Y;, = (2K;€)~L Its strength vanishes at
Y =Y, and as Y00, and, again to zero-order, its maximum corresponds to the maximum
jump level (AW max = 3% at 8¥,. The first-order corrections are derived without difficulty.

Based on the above relations between Rgy and %, and on the connexions between these and the
original variables, it is an easy matter to derive, to various orders, the shock-shape equation in
the physical plane.

Previously there have been several attempts to derive a shock-shape equation uniformly valid
everywhere (see, for instance, Legras (1953)). The result has never been satisfactory except in
the case of Friedrichs (1948) (see the exhaustive discussion of Lighthill (1954)), who has succeeded
in providing a valid approximate parametric representation of the shock shape. The determina-
tion presented here, based on the use of second scales, has the advantages of resulting in simpler
expressions and of providing a direct relation with the flow field, thus leading without difficulty to
higher order approximations.
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Obviously the above procedure can be applied to the determination of the rear shock shape,
and of the field behind the rear shock, and to the determination of the complete flow field also
on the downward side of the wing when the section is not symmetric or symmetrically located.
The additional feature of this determination is that the values of W(x) in the region following the
wing (corresponding to the shape of the dividing streamline) are not known in advance and must
be determined by matching the upper and lower flow fields. Itis actually a known result (Lighthill
1954) that the values of W(x) vanish to first- and second-order accuracy, but become different
from zero in the third-order approximation (third-order downwash).

If still higher approximations to the flow field were required, it is now evident that a double
scale is necessary for the perturbed characteristic coordinates, aswell as for ¥, and hence also for X,
and the corresponding uniformly valid development, can only be obtained by supplementing the
coordinate perturbation technique by the multiple scale technique.

4. FINITE AMPLITUDE ORGAN PIPE OSCILLATIONS
The one-dimensional unsteady flow equations of a perfect polytropic inviscid gas are
(1fy)pe+ (I/Y)upm +pu, = O:}

p(ug+uuy) + (1[y)p, = 0,
0.t+i0-ac = 0,

(4.1)

where again p=pie

has been used to transform the usual continuity equation to the form of the first (4.1). Here p and
p have been normalized through their undisturbed values, u through the undisturbed speed of
sound, x through a reference length (we choose the length of the pipe), and ¢ through the corre-
sponding undisturbed wave propagation time (reference length/undisturbed speed of sound).

It is useful to introduce also the normalized sonic velocity

a = plp = pr-orcie, (+2)
The boundary conditions
u=0 at x=0 and x=1 (4.3)

are supplemented by the knowledge of the initial distribution of p, « and o. Moreover, across any
shock the shock conservation equations must be satisfied. Here, since we are limiting ourselves
to the second order we can, instead of writing the conservation equations, make use of the known
property that the so-called Riemann invariants [a/(y — 1)] + u are~up to second order — constant
across shocks moving respectively in the negative or positive v-direction (which we shall indicate
respectively as s-shocks or r-shocks). Hence developing according to (4.2), and indicating with A
the jump of any quantity through the shock, we have

Al(pa]y) 2] = 0, Al(pafy) Lus) = [(v+ 1) [47°] A(p3); (4.4)
the upper and lower signs holding respectively on s- or on r-shocks. In (4.4) use has already been
made of the known property that across any shock

Aoy = Aoy = 0,
so that oy and o, remain zero if, as we shall assume, they vanish initially. Finally use can be made

of the known property that, again up to first order, the shock velocity is equal to the mean of the
wave velocities on both sides of the shock,

(dxsn/dt) = (Fa+u),. (4.5)
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From now on, we shall indicate with f,, the arithmetic mean of the values of the quantity fon the
two sides of a shock.
Let us take for the variables the expansions

p=1+4ep+e%o+...; u=cu;+e%u,+...; 0‘=eo-1+e20'2+...,} (4.6)

p=1+ep+€*py+...; a=1+ea,+e%a,+...,

where ¢ represents a small parameter representative of the perturbation amplitude. Substituting
in (4.1), we obtain the first-order perturbation equations

(UP)pre+tay = 05 s+ (1[Y)p1e = 0; 03 =0 (4.7)
from which we obtain the well-known acoustic solution
(1/p)py = p1 = 1(r) +¥1(5);  wy = §y(r) = V¥1(s); 01 =0, (4.8)

the last being so if the initial disturbance is homentropic, in which case the first equation provides
also p;. Herer = ¢ —xand s = ¢+x are the linear characteristic coordinates, of which, respectively,
¢, and 9, are arbitrary functions.

The conditions # = 0 at ¥ = 0 and 1, obtained from expanding the conditions (4.3), become

Pu(t) = ¥a(8);  Pu(t—1) = Yy (t+1) = (¢ +1), (4.9)

that is ¢; and ¢, are one and the same function, periodic with period 2. The values of ¢,(¢) in the
interval 0 to 2 can immediately be calculated from the known initial distribution of p; and #;.

The solution (4.8) can be inserted in the second-order perturbation equations obtained from
(4.1) by using the expansions (4.6), and these can in turn be integrated, with the result that
secular terms in ¢ appear in the solution. As a consequence for sufficiently large ¢ the second-order
terms of the expansions (4.6) grow larger than the first-order terms and the expansions fail to be
uniformly valid. Physically, this is due to the fact that the nonlinear solution cannot be periodic,
and that the initial wave shape undergoes a slow distortion, which only vanishes when ¢ 0.

This effect, due to the lack of parallelism of the nonlinear characteristics, can be taken care of,
as in the treatment of progressive waves, with the help of the multiple scale technique. We
introduce a second time variable

0 = et, (4.10)

and we substitute /0t + €000

in lieu of 9/0¢ in (4.1), as if ¢ and 6 were independent variables. After this replacement and the
substitution of the expansions (4.6), we obtain again the first-order perturbation equations in the
form (4.7), but their solution will be this time

(1/7)1’1 =p1= ¢1(1‘, 0) +¢1(5’ 0): U = ¢1(ra 0) —¢-1(S> 0): oy=0, (4'11)
where again application of the first-order conditions obtained from (4.3) gives
¢1(t’ 0) = 101(5, 0), ¢1(t_ 1,0) = 1ﬁl(t'l' 1,0) = ¢1(t+ 1,0), (4'12)

showing that ¢; and ¥, are one and the same function, periodic in ¢ with period 2 (but still
depending separately on ). In spite of the identity of the two functions, in what follows we shall
still write for brevity ¢, to indicate ¢,(r, 0) and ¥, to indicate ¢,(s, 6).

25 Vol. 272. A.
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The second-order perturbation equations, after substituting the first-order solution (4.11),

become
(1/7)pas+ oy + Pro+ V19— (P1= V1) (P1r— V) = V(D1 + V1) (D1 + V1) = O,
o+ (1/Y)pow+ P10 — V10— (P1— V1) (P1r +¥is) + (D1 + V) (P1r— V1) = O,
oy = 0.

Integration of the third equation gives o, = 0 if the initial disturbance is homentropic. In view
of the definition of r and s the first two equations can be combined as

O[(paly) +upl[0s = — Prg+ (1 — Y1) Prp+3(P1+ ) [(¥—1) Sr + (¥ + 1) Yri]s
O[(pol7) —us][Or = = Yrip— (P1— Y1) Vis+3(P1+ Y1) [(Y +1) 1+ (¥ — 1) Y]

We integrate the first with respect to s, keeping  constant. It is convenient to choose r as the
arbitrary constant representing the lower limit of integration. Similarly, we integrate the second
equation with respect to r choosing s as the lower integration limit,

The result is

(Baf) 0= By + 1) hashs = b (=1 =437 e [ 1105

HH 1) G — )+ 1+ 1) (-4 + 208,
(a7 = = (3 + 1) Yt =l (r=9) =33 =) v [ had’

3y + 1) Yuld =) + 1y +1) (P~ 91) + 25

Here ¢35 = ¢¥(r, 0) and ¢F = ¥ (s, 0) are arbitrary functions of the respective arguments and '
and s’ are running variables.
It is appropriate at this point to introduce the coordinate perturbation defined by

(4.13)

¥ =X+ex;+..., t=T+et,+... (4.14)
or, in terms of the characteristic coordinates, by

r=R+er;+..., s=S+es,+.... (4.15)
Here R=T-X, S=T+X, rnn=t-x, § =1+

We also introduce the expansions

u=eclU+eU,+..., =1+4¢eP +e?P+...,
1 2 p 1 2 } (4:.16)

o=€eX+622+..., a=1+ed;+e24,+....
In all of the above expansions the coefficients of the various powers of € are to be considered

functions of the perturbed coordinates and, of course, of 6.
Application of (1.4) gives the relation between the coefficients of the expansions (4.16) and

(4.6). We obtain P, = py(R,S,0) = y[$:(R, 0) + $(S, 0)],}

Uy = uy(R,S,0) = ¢1(R,0) — $4(5,0), (4.17)
Z, = 0.
and (117) Pot Uy = (1]7) po(R, S, 0) +us(R, S, 0) + 26,(R, 0) 11 (R, S, 0),
(1)y) Po— Uy = (1]7) po(R, S, 0) —uy(R, S, 0) + 2¢4,(S, 0) 51(R, S, 0),} (4.18)
2, =0.
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The determination of 7, and s; comes from the application of the conditions (4.5). If there are
shocks, for the uniform validity of the expansions we may require the discontinuity of all the
cocflicients P, Uy, P, U, ... to take place at the same values of R and S. Hence the position of
the shocks must correspond to constant values of R or § for r-shocks or s-shocks respectively. This

reans (dX/dT)en = F 1 (4.19)

respectively along s- or r-shocks. In this case, and in the assumption that there is only one shock
coming and going (fundamental mode), the T-period is always 2, and the frequency o, in the
perturbed time, remains constantly equal to =, so that we have always wt = = 7. Hence if the

expansion for o is
P w=7+ew +..., (4.20)

comparing with (4.14) we obtain w, = —=(t/T). (4.21)

The following determination of 7"and X is carried out in the assumption that shock waves are
present. In the opposite case when the waves are continuous obviously the period is not deter-
mined by the propagation time of the shock. The discussion will show how this case is handled.

From (4.14) we obtain

dx = dX{1 +e[(x5+%15) (AT)dX) + 29— x12] + ...},
dt = dT{1 +e[tyz+ g+ (bhg—bp) (AX/AT)] +...}.
Hence using (4.19) one finds for the s-shocks

(dx/dt)s-sh =—1 -+ 2€(x1R+t1R) +...=— 1 + 2€.S'1R+ ven
and for the r-shocks
(dx/dt)ysn = 1+ 26(xyg—tyg) + ... = 1 —2er,g+....

Application of the condition (4.5) gives, after introduction of the expansions (4.16), with
4, = [(y—1)/2y] P, by virtue of (4.2),

(dx/dt)sh = F1+e{U;F[(y—1)/2y] Pl + ...

with U,, P, given by (4.17). Taking into account the fact that along s-shocks or r-shocks only
?1(S, 0) or ¢,(R, 0) respectively undergo a discontinuity, and comparing with the two preceding
expansions for (dx/d#)sn we get the two equations

ris = 1(8=7) ¢:(5,0) =1 (y +1) d1ms

. . sip = 1(8—7) $1(R, 0) = /(v +1) 1,
integrating we get

5
n= 467 [ BB, 0) AR~ 1 +1) fun(S —R) +A(R),
5
1= =1@=9) [ AR, 0) AR +Hy+1) ua(S—B) +8:(S),
where f; and g, are arbitrary functions of the respective arguments. Hence we obtain
K
2= 5,1 = =33 =7) [ 4i(RL0) AR + 4+ Dpon(S—B) +2:(S) A (R),

2ty = sy +1 = g1(8) +A(R).

25-2
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It is convenient to choose f; and g, so that x, vanishes at x = 0 and 1, so that the ends of the tube
correspond to X = 0 and 1. The simplest choice is

AT = () = -7 =3+ 1) 41 T, (4.22)
1742
where Wy=3), H(T,0)dT”

represents the mean value of ¢; over a cycle. Observe that both (¢;) and ¢,,, can be functions

of 6.
With this choice we get

s
n=16-7)| [ (R0 dR + 2R | -4 + 1) fin(R+S),

; (4.23)
5= 46 =) = [ R0 AR 250 |~ 1y +1) (R4 S),
s
5= =167 [5,®,0) ()] dR',} "
b= [-7) (60 —bo+ 1) 1] T.

Again, we notice that both coordinates need being perturbed in order to obtain uniformly valid
results.
Comparing with (4.21) we obtain

0y =7[F(y+1) 1= 3B —-7) {$D]. (4.25)
It is interesting to observe that, contrary to what happens in the preceding example of the super-
sonic wing, the perturbed characteristic coordinates are constant not along the characteristic
lines of the original equations, but along shocks. Alternatively, one could elect to make them
constant along the characteristic lines and determine the shock shape in terms of the perturbed
characteristic coordinates using a procedure similar to that of the preceding example, where
actually the procedure was dictated by the need of suppressing secular terms. However, this pro-
cedure would be less rational in the present example, where the suppression of the secular terms
already follows from the application of the condition of periodicity, so that we are free to use the
coordinate perturbation to substantially simplify the determination of the shock.
The values (4.13) and (4.23) can now be used to calculate the expressions on the r.h.s. of (4.18),
after which the values of P, and U, can immediately be obtained. The expression for B,/y con-

tains a term BN~ 7+ D) bun} (Brnt+Ys) (R+8),

which grows secularly with time. This secular growth, acceptable in the expressions (4.23) for
R and §, and in the expression (4.24) for 7" (because it only involves the stretching of the time
variable due to the departure of the shock velocity from the sonic velocity), is evidently not
acceptable for the pressure. It can, however, be immediately eliminated by observing that if one

writes (BintV1s) (S+R) = (Bin=Vss) (S—R)+ 2Rpun + 2825

the first term is non-secular (because §— R = 2X is limited) and the other two terms are secular
but can respectively be absorbed in the arbitrary functions ¢3 (R, ) and ¥ (R, 6). Indeed if we

write by = 35 —{[3(3—1)1{B0) — 1 (¥ +1) $1} Ry
Uy =Y —{[3(3—7)1<p1) — (v +1) b1} Sy,
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the resulting expressions

Up = (v +1) (1= b1m) Prr— 2010+ (v + 1) (¥1— P1m) Y15 —2¥10] (S—R)
+[E(y +1)] (1 — 1) + o~ Vs

(Boly) = 2[(y +1) (1= P1m) Prr— 2610 — (¥ + 1) (V1= P1m) Y15+ 2¥19] (S~ R)
By + 0] (1 —31)2 + dat+ s

present no secular variation provided ¢, and ¥, are periodic in the respective R or S variable,
with the same period 2 as ¢, and ¢,. The second-order condition obtained from (4.3), U, = 0
at X = 0, is evidently satisfied provided v, (7, 0) = ¢,(T, 6). Application of the condition U = 0
at X = 1 results in the equation

(Y +1) (h1— Pim) Prr— 2019 = 0 (4.27)

since at R = T—1,8 = T+1 we have ¢; = f; and ¢, = 9, because of the periodicity.
Equation (4.27) is substantially the inviscid Burgers equation. It determines the shape of the

waves following an arbitrary initial disturbance, and their distortion with 6. Its general solution

can be written as

(4.26)

0
b= HIR+ T+ 01($:0- [ $1nat’)), (4.25)
where the arbitrary function # is determined by application of the initial condition
$1(R, 0) = ¢y;(R)
sothat H = ¢y,.

It is not our purpose here to discuss in detail the consequences of (4.28), but only to present a
few observations. First of all, by integrating (4.27) over one period, and observing that(¢, — ¢;,,)?
is continuous by definition even at the shock, we obtain

<¢1>0 =0,

with the mean value {¢,) defined by (4.22). Hence the mean value 2y{¢,) of the pressure
perturbation remains constantly equal to its initial value. In particular it vanishes if the initial
disturbance does not involve a variation<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>